On-Off controller in heating and cooling modes with timer Project for PR200-24.2

Project overview

The example explains the use of an on-off controller in heating and cooling modes with a timer. The project contains 2 data processing blocks and 2 screens.

Fig. 1. Program workspace

Data processing blocks:

- Input signal processing
- Output control

Screens:

- Sensors
- Controllers

Name	Туре	Description
11	BOOL	Heater enable (NO contact, latching)
<i>I2</i>	BOOL	Cooler enable (NO contact, latching)
I3	BOOL	Heater / timer on (NO contact)
<i>I4</i>	BOOL	Cooler / timer on (NO contact)
AI1	REAL	1st temperature sensor (4-20 mA)
AI2	REAL	2nd temperature sensor (RTD)
Q1	BOOL	Heater
Q2	BOOL	Cooler

Table 1. Device inputs/outputs

Table 2.Project variables

Name	Туре	Description
heating	BOOL	Heater control signal
cooling BOOL		Cooler control signal
enable1	BOOL	Heater enable
enable2	BOOL	Cooler enable

timer1	BOOL	Heater / timer on					
timer2	BOOL	Cooler / timer on					
sens1_error	BOOL	1st sensor / error					
sens2_error	INT	2nd sensor / error					
hys1	REAL	Heater / hysteresis					
hys2	REAL	Cooler / hysteresis					
duty1	INT	Heater / duty time					
duty2	INT	Cooler / duty time					
sens1	REAL	1st sensor / signal (temperature 4-20 mA)					
sens1_indication	REAL	1st sensor / signal (temperature °C)					
sens1_high	REAL	1st sensor / upper limit					
sens1_low	REAL	1st sensor / lower limit					
setpoint1	REAL	Heater / setpoint					
sens2	REAL	2nd sensor / signal (temperature Ω)					
sens2_indication	REAL	2nd sensor / signal (temperature °C)					
setpoint2	REAL	Cooler / setpoint					
wire_resistance	REAL	2nd sensor / wire resistance (Ω)					

Input signal processing

The sensor connected to input *AI1* is a current sensor with a 4-20 mA output signal. The output signal is converted into temperature using the *CONV4..20* macro, which scales the current signal.

The constant applied to the input Err_Value is the value on the macro output Out in case of error.

The sensor connected to the AI2 input is a PT1000 resistance thermometer. The output signal is converted to temperature with *PT1000* macro that scales the resistance signal. It also provides the wire resistance compensation over Rw input.

Fig. 2. Input signal processing

Output control

Fig. 3. Output control

The on-off temperature control is provided by two 2PHReg+ macros. One of them works in heating mode, the other in cooling mode.

If the timer is enabled, the desired temperature is kept constant for the set duty time.

The duty time, setpoint and hysteresis for each controller can be read on the device display and changed using the function buttons.

The controllers can be enabled/disabled over two latching NO contacts connected to the I1 and I2 inputs.

Screens

Table 3. Function buttons

Function buttons	Action
\gg	Scroll down through screen rows
«	Scroll up through screen rows
$ALT + \bigotimes$	Switch to the next screen
ESC	Switch to the first screen

Initially, the screen *Sensors* is displayed (Fig. 4). It shows the status of the both sensors (*normal/error*) and the measured temperature.

S	Е	Ν	S	1	:					Ν	0	R	Μ
Т	Е	Μ	Ρ	1	÷	+	0	0	0	0		0	С
S	Е	Ν	S	2	:					Ν	0	R	М
Т	Е	Μ	Ρ	2	:	+	0	0	0	0		0	С

Fig. 4. Screen Sensors

The next screen *Controllers* (Fig. 5) shows the parameters *Setpoint, Hysteresis* and *Runtime* for both controllers that can be set using the function buttons.

S	P	1	:			+	0	0	0	•	0	0	С
н	Y	S	1	:		+	0	0	0	-	0	0	С
D	U	Т	Y	1	:				0	0	0	s	
S	Ρ	2	•			+	0	0	0	•	0	0	С
Н	Y	S	2	:		+	0	0	0	-	0	0	С
D	U	Т	Y	2	:				0	0	0	s	

Fig. 5. Screen Controllers